
The Wine Library 

Our task is to implement a management system for a wine library.




We will consider a physical structure  consisting of many racks, and each rack contains 
different bottles of wine.






We begin with a single bottle of wine.  This is a physical object which has a number of  
properties, e.g. winery, varietal, vintage, etc. A rack is a storage element which contains 
a number of slots in which to store bottles of wine.


Abstracting the Physical Wine Cellar 

Clearly, each bottle of wine is a physical object belonging to the class of objects we 
might define as the bottle class. Each bottle (object) has a set of attributes:




Attribures: Bottle Object


bottle_id:  Each bottle we purchase and add to our cellar has a unique 
designation.  Even after we consume the contents, we will not reassign that 
bottle_id to a new bottle.  Rather, we will keep a record of it in a list of bottles we 
have consumed.


category: red, white, rose


winery:  The winemaker is an important attribute of a bottle object.


varietal:  Chardonnay, Pinot Noir, etc.


vintage: The year the wine was bottled


category:  This attribute is a designation that differentiates varietals from a 
winery: examples: Clone 5, Reserve, Dominique, etc.


Of course, there are any number of other attributes we could add including: 
purchase date, purchase price, etc. It is reasonably easy to add these to our 
class Bottle.


At this point we need to make a decision about how we model the wine racks.  Are 
they objects, or are they attributes of a bottle (where the bottle is stored)?.  We could 
choose either approach.  In a first approach to modeling the cellar, I choose to add the 
following attributes to the bottle object, making the rack id and location slot properties 
of the bottle class.


Additional Attributes: Bottle Object


bin_no: The location of the bottle the rack in which it is stored. 

irow: The location of the bottle in irow of this rack 

icol: The location of the bottle in icolumn of this rack 



Program Vision 

This program uses object oriented programming to manage a wine library. The primary 
object is a bottle of wine.  Data is stored in a comma separated file (csv) with each 
record containing the attributes of a bottle (as summarized above). A Graphical User 
Interface (GUI) provides the user with an ability to view the library by selecting bottles 
by:


• CATEGORY (red, white, rose)

• VARIETAL (Chardonny, Pinot Noir, Zinfandel, etc.)

• WINERY 

• STORAGE RACK 


The Graphical User Interface is pictured below.




The top row of widgets are drop-down menus that provide a list of values for the 
attributes of all  bottles in the wine library.  These lists are constructed when the wine 
data is read into to the program.


The second element of the GUI is the larger grey block.  Once an attribute value is 
selected, the list of all bottles in the library (with that attribute value) appear here




Below, the user has selected the varietal Sauvignon Blanc.  The three bottles in the 
library are displayed.  Here we use the mouse to select bottle 53 a 2017 Merry Edward 

Sauv. Blanc.  Once we select a bottle from this 
inventory, the attributes are displayed below in Entry 
boxes in the EDIT FRAME.  At this point we can make 
any changes to the data .  In the final frame below (the 1

COMMAND FRAME) we can use the UPDATE button 
on the left to change the data held by bottle object 53.  
If we withdraw the bottle from the library (consume it, 
for example) we press the CONSUMED button.  That 
does not delete the bottle, but it stores it in a special  
rack that we can peruse at a later time to recall a wine 
that we have consumed.





 The bottle number cannot be edited.  Even if the user were to edit Bottle ID here, it will not be 1

changed in the bottle object.



If we don’t select a bottle from the BOTTLE FRAME, the entry boxes below remain 
blank.  Here we can add a bottle to our library by typing the details into the EDIT box.  
Once we have entered the data, the NEW BOTTLE button will enter the new wine data. 
The program will look up the BOTTLE ID of the last bottle in the library and assign the 
next bottle_id to tag the entry.  


Notice that the last pull down menu in the SELECT frame enables a view of one of the 
wine racks in the library. Rack 0 is the list of all bottles withdrawn from the library 
(consumed), while racks 1,2, and 3 are physical racks.  If we select rack 1 we get a 
display of the bottles in rack 1 which is a 9 x 6 matrix of physical spaces. The GUI 
displays the bottle number, vintage, winery, and varietal stored in each slot of the 
physical rack.




Implementation 

There are 9 major divisions in the program.  These are identified in the code by the 
following:


• IMPORT PACKAGES TO SUPPORT THE PROGRAM

• DEFINE THE BOTTLE CLASS

• INSTANTIATE BOTTLE OBJECTS FROM Wine-data.csv




• CREATE THE GUI INTERFACE

• SELECT FRAME

• BOTTLE FRAME

• EDIT FRAME

• COMMAND FRAME AND COMMAND BUTTONS


• START TKINTER EVENT MONITORING


We will summarize each of these in the remainder of this documentation.  I’ll begin, 
however, with the last one first.  It is the simplest to write, but is the key to 
understanding  the GUI interface and the functioning of the program.


The method mainloop()  is the last statement in the program. It operates on the root  
window, in which all of the interactive tkinter widgets are placed. This function detects 
events associated with tkinter widgets. These are reflected in changes in the display, 
such as mouse clicks, button presses, key strikes, etc. After detecting an event, an 
entry is placed in the event queue. This launches a call which is routed to an 
appropriate function (defined in the tkinter widget) to implement an action in response 
to the event. The event loop functions as an infinite loop, continually looking for tkinter 
events.





Lines 7-9 

There are two packages of modules which we need to import to support the program: 
csv, and tkinter.  The first of these enables us to read and write to a comma separated 
data file.  The second (tkinter) enables the GUI


Lines 15-44 



The Bottle Class has nine attributes. (0) bottle_id, (1) winery, (2) varietal, (3) vintage, (4) 
category (cat) specifying red, white or rose wines, (5) comment specifying the 
differentiation of varietals from this winery, (6) bin_no (or storage rack), (7) irow: row 
address in the bin, (8) icol: the column address in the bin. The variable bottles is a list 
of bottle objects.  The third object  in this list bottles[2] will be a bottle object which has 2

a representation with it’s nine attributes (separated by commas) as:


3, Ferrari Carano, Tresor, 2015, Red, NS, 1, 0, 2


In addition, we define two methods which can be applied to any bottle object.  The first 
is update_bottle. The argument is passed to this function from the command frame 
(which we define later in this discussion). It identifies a specific bottle by its id, passed 
to the function as bid. There are a set of statements like:


	 bottles[bid].winery=bot_winery_entry.get() 

.get() is the method to read information from an entry box (we define this in in the 
program) and bottles[bid].winery is the winery attribute of the bid element in the 
list bottles.


The method display_bottles writes the attributes of a subgroup of bottle objects into a 
tabular display called bottle_tree. Again, this is described below. 


The important thing to understand at this point is that the bottle object  can have its 
attributes updated (update_bottle(…) and it can be displayed in tablular form in the  
the GUI.


Lines 50-79 

The attributes of the wine library are stored in a csv file named:


	 Data/Wine-data.csv


This is a comma separated values file in which the first record is a header which lists 
the attributes, by name.  Subsequent records list the values of the attributes of each 
bottle in the library. Before reading data into the program, two variables must be 
initialized: nbottles=0 (the number of records in the file) and the variable bottles=[ ] 

 Recall that indexing in Python begins at 02



designating an empty list.  A for loop iterates over the elements of rows of the csv 
records. After each record is read, a new_bottle object is created using the attribute 
data found in the file, and new_bottle is appended to the list bottles objects, which was 
initially a null list.  After finishing reading the data, nbottles will be the number of 
objects, each representing a bottle in the library. The lists: varietal_list, cat_list, and 
winery_list are constructed to contain these attributes which appear in the data and will 
later be used to sort the data.


Lines 84-90 

Using tkinter we create a window named root which will contain the elements of the 
GUI interface. Within root we define tkinter StringVars which will be used to link user 
events to widgets.  Specifically, these variables are select_cat, select_var, 
select_winery, and select_rack,  We will see shortly that these variables indicate that 
the user wants to display a wine category (red, white, rose), varietal, winery, or storage 
rack. These variables will be used to displays the selected group of bottle objects in 
tabular form.


Lines 97-195 

The function of the select_frame is display the option menus so that the user can 
display bottles in the library by category, varietal, winery, or storage rack. We must 
create the select_frame and then pack  or put it in root. (lines 173-174)





The select_frame contains buttons to choose subsets of bottles  
from the wine library.



The select_frame contains four option menus. The following code creates the menu for 
the categories of wine (red, white, rose).


The name of the menu is cat_menu and it is created using the constructor 
ttk.OptionMenu(,,,) . The arguments are the parent in which the menu will be placed 
(select_frame), next we specify the tkinter StrVariable associated with this menu 
select_cat, and finally the list of categories cat_list collected from the csv file. The 
OptionMenu object assigns the second argument, select_cat, to the value in the list 
that the user selects . The last argument of cat_menu is command=update_cat; this 3

encapsulates the ACTION. When you select a particular option (e.g. ‘red’) the function 
update_cat will be executed. The code for this function is at the beginning of the 
program segment denoted by SELECT FRAME.


This section of the program begins with four functions named:


1. update_cat(event)

2. update_var(event)

3. update_winery(event)

4. update_rack(event)


 This event and its handling is built into the class of objects OptionMenu and is inherited by 3

any object created using the constructor.



The bottle_frame contains a tabular display of bottles  

chosen from the select menus.



Each of these functions updates a display of a selected subgroup (using the menus 
just defined) in the BOTTLE FRAME. They are triggered by an event which is an 
argument of each function.  We will defer discussion of the details of these functions 
until the next section.


Up to this point we have embedded widgets within frames using the method .pack() . 
This simply adds the widget to the next available space within the frame in which it is 
defined.  In line 179 we use an alternate approach using the method .grid() .  This 
method uses a grid of rows and columns in a frame.  It is convenient for placing a 
group of objects. The argument row=0, column=0  designates the position in a matrix. 
Again, padx and pady are blank space paddings.


The Bottle Frame is the central feature of the program.  We begin with the creation of 
the frame in root (Line 200), and the following statement packs this frame in the root 
below the select_frame.  I’ll skip down to describe the widget which is key to the 
program. The object bottle_tree is a ttk treeview object which is designed to display 
tabular data. While it has the capacity to display hierarchical  elements, we are not 4

using that capability here.  


Before packing bottle_tree into the bottle_frame, there is one more step we must 
take. We do not know the size of the tabular display created by bottle_tree.  When we 
select category=‘all’, for example, we will have a large group of bottles to display.  On 
the other hand, selecting category=‘rose’ we will display a much smaller number of 
bottles.  Therefore, we want to make bottle_frame contain a scroll bar.


This code creates a new object bottle_scroll using the object constructor: 
Scrollbar(bottle_frame). The new object is embedded in bottle_frame.  In the 
second statement, we describe the functionality of bottle_scroll.  It is to control the 
vertical scrolling of bottle_tree. We pack bottle_scroll on the right hand side of the 
bottle_frame and have it fill the height of the field.


 Think of an entry in a table which has sub-entries. The children of this entry can be displayed 4

by clicking on a link attached to the parent.



We are now ready to define bottle_tree.


Lines 253-274 define the columns of the tabular data:


Recall that in Python all indexing begins with 0.  We are not using column 0 as this 
would be used for an hierarchal tree structure. Column 1 has a width of 60 characters 
and the text that will be placed here will be anchored in the CENTER of the column.  
The next line describes the heading for column 1.


Now we can return to the functions that head this section. There are four functions that 
are associated with selecting a category, varietal, winery, or rack. I’ll describe the 
varietal function update_var(event).


I’ll start in the middle of the code. select=str(select_var.get())  Recall 
that the variable select_var is a tkinter string variable which has definition within the 
root window. The method .get() retrieves that value of that variable.  The for loop 
117-120 sorts thru all the bottles to find the ones which satisfy the boolean expression  
varietal==select and bin_no !=0.  The second component is there to exclude from our 
list any bottle in bin0, which are bottles we consumed. When we find a bottle matching 
the requirement we apply the display_bottles method defined for the class Bottles. This 
appears in the code (lines 35-45).


Now the really critical issues— what is the argument event in line 111?  An event can 
be a key press, a mouse event, a button press, etc.  The solution is to bind the mouse 
action of selecting to a particular record in bottle_tree.




Here, “<ButtonRelease-1>"defines a right mouse click, activation when the mouse 
button is released. This issues a command to execute the function 
select_record(event).  This function is defined (lines 204-228).   When you select a 
record in bottle_tree the attributes of the bottle appear in entry boxes in the next frame
—the edit frame.  The first thing that the program does is to delete anything that is 
currently in the nine entry boxes (each box associated with an attribute of the bottle 
object.  


There is a method named .focus() defined for treeview objects which retrieves an item 
in  bottle_tree  (the row selected). Line 218 assigns the column values to the list r_vals.  
Finally, we can put these values into the appropriate entry box (starting at position 0) by 
referring to an element, for example  r_vals[0]; this is the position that holds the value of 
bottle_id, which in the final frame we define as bot_id for that entry box.





Lines 276-325


The edit frame is shown above.  It displays the nine attributes of a bottle object. The 

name of the attribute is written in a tkinter object called a label, and the area to the 
right of each label (filled with light blue) is an entry box.  When a record is selected from 
bottle_tree the values a copied here.  The user will also use these boxes to change 
values (except Bottle_id, which cannot be changed).




The edit frame is used to either edit attributes of bottles,  

or to enter new bottles to the wine library.



After creating and packing edit_frame, we define the labels and entry boxes.  An 
example follows.  The code is self explanitory.




The final major division of the program is the (command)  com_frame.  In this frame we 
define four button objects to accomplish the following actions:


• Update the bottle object (not just the display)

• Save the updates to the bottle attributes to the csv file.

• Enter a new bottle of wine

• Mark a bottle as consumed


As an example of one of the four command frame buittons consider the second 
operation Save the updates to the bottle.






The command frame is used to update the data displayed in  

bottle_tree, the bottle attributes, and the csv file. 



First, we create update_button in this new frame com_frame and give it text = ‘Edit 
Bottle’. When the button is clicked, we issue the command edit_bottle. The function 
(lines 335-349) retrieves the edited values in the entry boxes and assigns them to new 
variables, using the method .get().


bot_id_entry.get()

bot_winery_entry.get() 

…

…


Finally, a single command


bottles[bid].update_bottle(bid)

applies the update_bottle method we defined in the definition of the class Bottles, to 
update all bottle object attributes.


The program ends with launching the method .mainloop applied to root.



