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This paper is divided into three sections. The first section focuses on 
modeling the dynamics of a pandemic.  The model embeds several 
parameters, which we estimate in order to explore the nature of the 
dynamics of a pandemic.  We  explore the timing of a generic shelter-in-
place order to control growth of infection. In section 2 we use real data 
from Santa Clara County, CA to identify system parameters and 
validate the model.  In section 3 we use the validated model for Santa 
Clara County to examine strategies for scaling back the shelter-in-place 
order, predicting the future of the pandemic. 
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1. Modeling a Pandemic 

This paper describes the dynamics of a pandemic like COVID-19.  The 
model targets a group of individuals in which the mechanism of 
contagion is community spread [1].  In this work we do not consider 
cases brought to the community from the outside.  There is no attempt 
to segment the group by age or geographic distribution.  On the second 
issue, think of this as the spread among individuals in their normal 
course of interaction within their communities.   

Consider three groups within the population. 

 
In the diagram to the right we 
represent the number of individuals in 
each category (S, I & R). If each 
infected individual interacts with (on 
the average) say m individuals during 
a time period T of contagion, what is 
the probability that one of those 
individuals will be a susceptible 
person?  If the distribution at the right 
is random, and interactions randomly 
occur,  then the likelihood of an 
infected person meeting a susceptible 
person  is proportional to the density 
o f s u s c e p t i b l e p e r s o n s i n t h e  
population. 

(1)  

If we include the chance of infection 
when there is an encounter, then the rate of new infections during that 

S The number of persons susceptible to become infected 

I The number of persons infected

R The number of persons recovered from infection

p =
γS

S + I + R
= γ

S
N
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Fig 1: Random encounters among S, I, and R

https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
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time period T is given by: 

(2) rate  

Here, the multiplier  depends upon several factors, namely the number 
of interactions m that an infected individual makes as well as the 
probability of transmission of the pathogen when a contact is made.  It 
is difficult to calculate this a-priori, but we may be able to infer the 
value from data describing the spread of the infection. 

There is a mortality rate among infected individuals.  The rate of death 
of these individuals is given by the following: 

(3) rate of deaths =  

There is also a rate at which infected cases (who do not die) are cured—
that is they move into the recovered class R. We will assume that this 
rate of conversion is given by the following: 

(3) rate of recovery =  

Here  is the cure rate. 

Adding these rates together gives the rate of change of the infected 
class. 

(4)  

The equation for the susceptible group  has a similar structure, but the 

sign of the  term is opposite; while an infection increases the 

infected number, it decreases the susceptible cohort.   Hence: 

(5)   

=
ρIS
N

ρ

−μI

−αI

α

dI
dt

=
ρIS
N

− μI − αI

ρIS
N

dS
dt

= −
ρIS
N
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While it is true that there will be mortality in the S group it is 
significantly smaller than the I group, and we will ignore this term. 
There is,  of course, no cure rate for the S group. 

Finally, we need to model the recovered group R.  Here the rate of 
change shares the cure rate from equation (4).  

(6)   

Finally, we can write an expression for the number of deaths M(t) and 
the total number of cases Y(t). 

(7)    

Stating it another way, M is the integral of   over some time interval. 

dR
dt

= αI

dM
dt

= μI
dY
dt

= ρI
S
N

μI
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   (8)   

   

   

   

  

dS
dt

= −
ρIS
N

dI
dt

=
ρIS
N

− μI − αI

dR
dt

= αI

dM
dt

= μI

dY
dt

= ρI
S
N

N = S + I + R
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Initial Estimation of System Parameters 

In a recent interview with CNN, Dr. Tom Frieden and Dr. Cyrus 
Shahpar  summarized the current understanding of COCID-19. One 1

important dimension is the basic reproductive rate of the virus.  
According to these experts, “the best current estimate is that that this 
rate is between 2-2.5, roughly twice that of seasonal influenza. Some 
studies have reported higher estimates.”   The next question to ask is: 2

How long is an infected individual contagious?  A recent  article in the 
journal Lancet, presents statistics from a study of patients in Wuhan, 
China. I will assume that the period of contagion for an infected 
individual is 3 weeks. If that individual has severe symptoms and 
requires admission to the hospital or self quarantine, the effect will be 
to isolate that individual from the social network. How can we use this 
data to estimate the contagion parameter in our model?  The expression 
below from (1.8b) shows the contribution to infection growth due to 
spread of the virus. Using  weeks,  2.3 for I=1 persons and 

 ≈ 1 (near the start of the epidemic the bulk of the population is 

susceptible). We can estimate . 

       

The next important parameter is the death rate. The World Health 
Organization reports that 3.8% of reported COVID-19 cases die. Now we 
have a problem.  How many COVID-19 cases are NOT confirmed? 
Estimates are that 80% of infections present themselves as 
asymptomatic or mildly symptomatic. But, recall that the 3.8% is based 
on confirmed cases. This would imply that of 1000 reported cases there 

Δt = 3 ΔI =
S
N

ρ

dI
dt

=
ρIS
N

ΔI
Δt

=
ρIS
N

ρ =
2.3
3

= .77

 Dr. Tom Frieden is former director of the US Centers for Disease Control and Prevention and 1

former commissioner of the New York City Health Department. Dr. Frieden is also Senior Fellow 
for Global Health at the Council on Foreign Relations.

 The article cites a report from the World Health Organization.2
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https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2
https://www.cnn.com/2020/04/09/health/coronavirus-important-questions-analysis/index.html
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would be 5,000 cases (confirmed and unconfirmed).  With an average 
duration of illness of 3 weeks, the number of deaths 38 per a total of 
5000 infected individuals. Assuming an average time to of three weeks, 
and the weekly death rate would be 

   

We can use similar reasoning to express the weekly cure rate as 

  

 

The simulation studies that follow, are intended to illustrate the 
dynamics of a pandemic.  They are not predictors of any specific 
population. 

Because there is uncertainty in the value of the parameters, the Figures  
2 and 3 show variation of the infections (I) and deaths (M) using  three 
different values of  = [.77, .70, .60].  
The results depicted in figures 2 and 3 are for a population of 2,000,000 
persons (roughly the size of Santa Clara County, CA).  The time scale of 
the dynamic system appears to be reasonable. 

μ =
38

5000 * 3
≈ .001

α =
(1.0 − .001)3

3
= .33

ρ
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ρ = .77
μ = .001
α = .33

Model Parameters: Covid-19 Epidemic
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The contagion parameter  has a marked influence on the progress of 
the outbreak.  The smaller the value of , the lower the apex of 
infections and the more it is pushed into the future.  When we 
implement social distancing, we reduce the frequency of contacts, and 
thus reduce .  Figure 3 demonstrates that lower values of  lead to 
fewer total deaths.  The total number of deaths is proportional to the 

ρ
ρ

ρ ρ
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Fig 3: Deaths (M) with parametric change of .ρ
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integral of the infections over time. While decreasing  reduces the apex 
of the curve, to also broadens the time over which the epidemic is active.  
The result is that the total number of deaths does decrease, but not as 
markedly as one might hope. 

There is no universal value for .  In a densely populated area like New 
York City where people crowd onto public transit,   is likely 
considerably larger  than in a rural community.  Without knowing the 
exact value of the contagion parameter, we can infer the general 
character of the epidemic, but we cannot predict things like maximum 
infections and time to apex.   

 In each of the cases illustrated in Figure 2, the pandemic has been 
allowed to die a natural death.  If we look at the red curve ( =.77) we 
can plot how S (susceptible), I (infected), and R (recovered) populations 
behave. 
 

ρ

ρ
ρ

ρ
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Fig 4: S,I and R as a function of time with =.77ρ
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The infection has died out, but there still are susceptible members (S) of 
the population which could ignite a second round of infection. It should 
be noted that we have made an assumption that the recovered class R is 
not susceptible to another infection.  At the present time, this is 
suspected, but not a proven fact. 

One of the critical issues that must be considered is: can our medical 
infrastructure support the number of severely impacted individuals?  At 
the apex of the infection, there are 400,000 infected individuals (about 
20% of the population).  Earlier we stated that 80% of this group was 
asymptomatic or mildly symptomatic. Using the 20% who are 
symptomatic, suppose that 10% required hospitalization. there might be 
as many as 80,000 with some symptoms.  If 10% of this group requires 
hospitalization, that means that we will require 8,000 beds at the apex 
of the epidemic.  If the load on the medical infrastructure exceeds 
capacity, the mortality rate will escalate and the total number of deaths 
will increase.  

Implementing Social Distancing 

Let’s try a few experiments with our model along with the parameters 
specified on page 5.  Suppose we can reduce the level of social 
interaction dropping the contagion parameter from .77 to 0.5 . The three 
trial runs in the following figure are for no implementation of social 
distancing, implementation at 10 weeks and finally delay in 
implementation until 15 weeks. 
It is clear that the earlier implementation of social distancing reduces 
the apex event and delays it’s occurrence. It is clear that the earlier we 
implement social distancing, the better off we are. The blue and green 
curves in the diagram above follow the uncontrolled curve until the 
implementation of the strategy.  The early implementation of the 
strategy reduces the apex event by about 40% and shifts the timing of 
this maximum about 10 weeks.  This is precisely the result that social 
distancing is designed to accomplish.  It will greatly reduce the stress 
on medical infrastructure and provide more time to put together assets 
to address the apex. 

© Donald R. Falkenburg 9 Draft 19 MAY 2020
Fig 5: Impact of timing of social distancing on the infections.
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Clearly, social distancing has a devastating impact on the economy. We 
will run some tests to explore when it may be appropriate to lift the 
restrictions. 

In figure 6, we show (in red) applying social distancing at 15 weeks and 
keeping it in place.  The red curve shows a discontinuity in slope at the 
point of application of SD.  We next allow social distancing to be in 
place until we reach the apex of the red curve; we then revert to the 
original value of  .  The number of infections begins to grow 
rapidly and approaches three quarters of the infections if we never 
implemented social distancing at all (compare the apex of the blue curve 
in Fig 6 with the apex of the red curve in Fig. 5).   

ρ = .77
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Fig 6: Impact of removing social distancing
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Delaying the removal of social distancing until 30 weeks is shown by 
the green curve.  Here, infections do grow upon removal, but it is far 
less severe. 

Why does this non-intuitive behavior happen? Let’s look at equation 
(7b) describing the rate of increase in infections. 

  

For fixed  the when  increases from .5 back to .77, S/N must 
have fallen sufficiently to have a small increase in dI/dt.  For the 

parameters in this run (after social distancing is removed)  

The small positive slope of the green curve in figure 6 can be seen here; 
at 30 weeks the value of S/N is still a little above the critical value of 
.43. 

dI
dt

=
ρIS
N

− μI − αI = I( ρS
N

− μ − α)
(μ + α) ρ

S
N

< .43
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Fig 7: S/N with social distancing applied between 15 and 30 weeks 
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2. Fitting Model Parameters to Santa Clara County Data 

There is a data file on github.com which contains COVID-19 data for 
many counties in the United States. The data for Santa Clara County 
begins with the first detected case on 31 JAN 2020 (day 0) and as this 
paper was written ends on 12 MAY 2020 (day 890.  The county was one 
of the first to order a shelter-in-place directive on 31 MAR 2020 (day 
61). The following figure plots the cases (cumulative) over time (from 
this data set) in days starting 31 JAN 2020.  
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Fig. 8: Cumulative cases of COVID-19 reported by Santa Clara County, CA.

https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv
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It is important to realize that these are confirmed cases. A study by 
Stanford University   revealed that the actual cases are on the order of 3

50 times as large as the cases confirmed by testing.  There is a reason 
for this.  First, many cases of COVD-19 present as asymptomatic or 
mildly symptomatic.  Testing has not been done randomly throughout 
the population.  Only those individuals who have severe cases and enter 
the hospital, medical staff and first responders, and individuals with 
symptoms whose medical doctor has written an order for testing.  I will 
assume that the actual cases and the confirmed cases are related by the 
following. 

(9)   

Equations (8) can then be rewritten in terms of the confirmed cases. If 
we multiply equations (8) by k and define ,  ,  

, and , then we obtain equations very similar to (8) 
except these are written in terms of scaled population parameters. 

   

	 	 


	 	 


(9)	 	 


	 	  	,	 


	 	 


Ic(t) = kI(t)

Ic(t) = kI(t) Sc(t) = kIS(t)
Rc(t) = kR(t) Nc = kN

dSc

dt
= −

ρIcSc

Nc

dIc

dt
=

ρIcSc

Nc
− μIc − αIc

dRc

dt
= αIc

dMc

dt
=

dM
dt

= μIc dYc

dt
= ρ

Sc

Nc
Ic

dNc

dt
= μIc

 	 A pre publication report by faculty of Stanford University and others indicates the true 3

number of infections in Santa Clara County, CA is at least 50 times higher than the confirmed 
cases suggest.  The research group administered blood serum tests to a random sample of 
residents of Santa Clara County to detect antibodies to COVID-19, which is an indicator that an 
individual had been infected.  The report has been criticized because, at present, we do not 
know the reliability of the serum test: does it give false positive or negative results? A summary 
of the report was printed in the Mercury News.
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https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v1.full.pdf
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There is a reason why we did not define .  The deaths which 
have occurred are countable; they are not sampled.  While there have 
been deaths for individuals who were not tested, autopsies have 
concluded that the death was the result of COVID-19.  There is likely 
some under count in M(t), but I have assumed that this is negligible.   

If you compare equations (9) to equations (8) they are very similar with 
I, S, R replaced by  .  However equations (9) are written for a 
scaled population .  In the subsequent work in this paper we 
will be working with this set of scaled equations because that is the 
data we have.  We can make an estimate of what is happening in the 
real population by dividing each of the “confirmed values” by the 
constant k. 

We now have 4 unknown parameters  embedded in the model.  
We will use data from Santa Clara County to identify these parameters. 

The data in figure 8 is not  but .  

If we assume that the susceptible fraction of the population  ≈ 1 (a 

condition near the beginning of the epidemic) then equation (9b) can be 
approximated by  

(10)     where  

We will solve this equation with the initial condition at t=40days  

(11)   

Since Multiplying equation (11) by  and integrating over the time 
span  

(12)   

Mc = kM

Ic, Sc, Rc

Nc = kN

ρ, μ, α, k

Ic(t) Yc(t) = ∫
t

0
ρ

Sc

Nc
Ic(τ)dτ

Sc

Nc

dIc

dt
= (ρ − μ − α)Ic = γ1Ic γ1 = ρ − μ − α

Ic(40)

Ic(t) = Ic(40)eγ1(t−40)

ρ1
40 < τ < t

Yc
40,t(t) = Yc

40,40 + ∫
t

40
ρ1Ic(τ)dτ =

ρ1Ic(40)
γ1 [eγ1(t−40) − 1]
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In fitting the data we have forced ; this is from the Santa 
Clara data. We next use the Santa Clara data to do a least squares fit to 
determine the constants a and b. 

(13)      

          
 
The result of the least squares fit is 

  =.1092   
(13)   

Y40,40 = 48

Yc
40,t(t) = Yc

40,40 +
a
b [eb(t−40) − 1] a = ρ1Ic(40)

b = γ1

γ1 [days]−1
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Fig 9:  Data fit to total infections 40<t<60
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We next move to fit data to the cumulative cases after the shelter-in-
place order on day 61.  The second set of data ranges from 60days<t. 
Again we begin with the equation  for  4

(14)    60 < t 

In order to insure no discontinuity in the fitting function, we will use 
 = 894.9. Let us write an expression for  

a1 = ρ1Ic(40) = 11.741 [days]−1

Ic(t)

Ic(t) = Ic(60)eγ2(t−60)

Yc
40,60 = Yc

60,60 Yc
60,t

 There is an assumption that  is still nearly 1.  This will be checked after the model is 4

completed.
Sc /Nc

© Donald R. Falkenburg 16 Draft 19 MAY 2020

Fig 9:  Data fit to total infections 60 < t 
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(15)   

Incorporating these into (15) 

(16)   

We will do a least squares fit to this equation 

(17)   

The fit to this second group of data is shown in Figure 9. 

   

(18) 
    

Dividing (18b) by (13b) we get 

   

(19) 
   

From equation (10) we can write 

(20)   

Ic(60) = Ic(40)eγ1(60−40) = 8.882Ic(40)

Yc
60,t(t) = Yc

60,60 + ∫
t

60
ρ1Ic(τ)dτ =

ρ2Ic(60)
γ2 [eγ2(t−60) − 1]

Yc
60,t(t) = 894.9 + ∫

t

60
ρ2Ic(τ)dτ =

8.882ρ2Ic(40)
γ2 [eγ2(t−60) − 1]

Yc
60,t(t) = 894.9 +

a
b [eb(t−60) − 1]

b2 = − .04346[days]−1

a2 = 8.588ρ2Ic(40) = 75.827[days]−1

a2

a1
=

75.827
11.741

= 8.588
ρ2

ρ1
= 6.458

ρ2

ρ1
= .7520

γ2 − γ1 = ρ2 − ρ1 = − .04346 − .1092 = − .1527
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Solving (19) and (20) yields the following. The dimension of these 
contagion rates from the least squares fit are in infections/day.  We 
must convert these to infections/week to use in our simulation. 

   
(21) 

   

In the least squares fit to the data, the growth coefficients  have units 

of .  Later when we do a simulation of the pandemic in Santa Clara  

County, we will use the time parameter as weeks, so equation (21) 
expresses these growth coefficients in the units of the simulation 

environment . 

We have data on the total number of deaths in the Santa Clara data.  
One important thing to realize is that when we measure deaths, there is 
no difference between confirmed deaths and real deaths.  We will 
assume that all individuals who die of the disease would have been 
tested .  Let us begin to estimate of  from equation (9d). Figure 8 5

displays the total number of infections plotted against time (in days).  
Integrating (9b) from time 0 to time t yields the following. But the data 
does not tabulate I(t), rather it tabulates Y(t) .  

         40 < t < 60 

(22) 

         60 < t < 90 

ρ1 = .6157[days]−1 = 4.31[weeks]−1

ρ2 = .4208[days]−1 = 2.9456[weeks]−1

γ
1

days

1
weeks

μ

M(t) − M(40) =
μ
ρ1 ∫

t

40
ρ1Ic(τ)dτ =

μ
ρ1

Yc
40,t

M(t) − M(60) =
μ
ρ2 ∫

t

60
ρ2Ic(τ)dτ =

μ
ρ2

Yc
60,t

 Either because they have had severe symptoms or post mortem revealed they had the 5

disease.
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We will fit the following straight line to the data on the left hand pane 
of Figure 10.  At t=40 days,  and M(40) = 1 

   

The least squares fit gives    

    
  

The fitting curve for the second pane ( 60 < t ) 
  
  
  
M(60)  corresponds to  and M(60)=31.776 

This assures that the two fitting curves do not have a discontinuity of 
value at t=60.  They do have a discontinuity of slope, however. 

There is a visual distortion in the least squares fit.  In the diagram 
above (right) the data points are more dense in the final segment of the 

Y40,40 = 45

M(t) = m(Y40,t − 45) + 1

m =
μ
ρ1

= .0383

μ1 = .0236[days]−1 = .1651[weeks]−1

M(t) = m(Y60,t − 894.9) + 31.776

Y40,60 = 894.9
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Fig 10: Deaths vs. cumulative cases (left)40<t<60 (right) 60<t<90
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data, so it “appears” that there is an error in the least squares fit.  This 
is not true.  

From the least squares fit   

  

    

  
There is no direct data in the Santa Clara records which addresses the 
cure rate .  However, Using our data fit shown in figures 8 and 9 we 
found that: 

   
                 
  

  

    
  

After having fitted these parameters to the data, we will perform a 
simulation and plot the Santa Clara data with the simulated response.   

The one parameter we have not estimated is the coefficient k.  The 
Stanford study indicated that this was on the order of magnitude of 
1/50.  For lack of any other data, we will use this value. 

The simulation of the Santa Clara pandemic using the following 
parameters: 

 k= .02 

m =
μ
ρ2

= .0592

μ2 = .0249[days]−1 = .1744[weeks]−1

α

γ1 = .1092 = ρ1 − μ − α = .6157 − .0233 − α

α1 = .4832[days]−1 = 3.382[weeks]−1

γ2 = − .04357 = ρ2 − μ − α2 = .4208 − .0233 − α2

α2 = .4412[days]−1 = 3.088[weeks]−1
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   (before shelter-in-place) 

   (after shelter-in-place) 

I chose to use two different parameters for the cure rate and the death 
rate.   

α1 = 3.382[weeks]−1 α2 = 3.088[weeks]−1

μ1 = .1651[weeks]−1 μ2 = .1744[weeks]−1

ρ1 = 4.31

ρ2 = 2.9456
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Fig. 11: Simulation results for the first test of the validated Santa Clara County Model.
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We note that the total infections and the total deaths in the simulation 
under-predict the actual data.  Note, however, that after the 
introduction of the shelter-in-place order (dotted line) that 

 .96 < S/N < .98 

Remember when we estimated  we assumed this was 1.0.  Using an 
average value of .97, this would increase  to a value above 3.0.  In the 
simulation, I adjusted  until I got a good match between the model 
and the Santa Clara data.  This occurred when:  = 3.15. 

ρ2
ρ2

ρ2
ρ2
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Fig 12:  Final validation of the model against the Santa Clara data.
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There is very good agreement between the Santa Clara data and the 
simulation of the total number of infections. The second graph in Figure 
10 shows .  Remember, there is not data for this variable.  In the 
simulations in section 1 of this paper, I(t) continued to grow after social 
distancing was in place.  Eventually, when S/N became small enough, 
I(t) reached a maximum, and the infections began to decline.  In Santa 
Clara County, the data shows that the implementation of the shelter-in-
place order was very effective, and there was an immediate decline in 
the number of infections.  The total infections continued to increase.  
The slope of the total number of infections began to diminish as soon as 
the shelter-in-place order was effected. 

One might ask why the cumulative deaths over estimates the data from 
week 3 to week 6.  There is no dynamic in the equations that could 
create this variation.  My guess is that there has been a delay in 
counting the deaths at any given time.  Other than this small variation, 
the model does predict what is happening in Santa Clara County. 
Another explanation could arise from the fact that there is an 
additional lag-time as patients in their final stages of life are sustained 
in the ICU. 

In the next section of this paper, I will use the model to predict some 
possible outcomes of changing the pandemic management stragtegy. 
When we used data to estimate the contagion parameters  and  we 

made an assumption that  ≈ 1.  The output of the simulation yields 

the fact that at the point of the shelter in place order this ration is 
0.9996 .  

3. Model Projections for Santa Clara County 

One reasonable question to ask is:  What would have happened if Santa 
Clara County did not implement Social Distancing?  In figure 13 we 
superimpose two simulations: (1) Red: evolution of the pandemic if 
shelter-in-place had not been ordered, and Black: evolution of the 
pandemic with shelter-in-place order.  One of the first things to see 
from the data is that the Santa Clara response did not just slow the 
growth by flattening the curve and shifting it toward the future, but 

Ic(t)

ρ1 ρ2
Sc

N
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Fig. 13:  The response (I, Y, and M) comparing Santa 
Clara shelter-in-place (black) to no directive (red)
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because of timely decision making, it actually created a strong decay in 
the infections. Comparing the non-managed response (red) to the 
managed response (black) the impact was a reduction in the maximum 
number of infected cases, from what would have been about 700 to 
about 200.  Remember this is not the total number of cases of infection.  
More on that shortly.  This max peak of the infections is critical to 
maintaining a working medical infrastructure—one which does not 
collapse under extreme loads.   

Turning next to the total number of infections.  For the simulation with 
the shelter-in-place order, the total number of infections for the time 
period simulated was about 2,000.  For the same region with no social-
distancing requirements that number increases to around 12,000— a 
six-fold increase.  This is even more concerning when one considers the 
factor k representing the ratio of actual to confirmed cases.  The 
Stanford pre-print referred to earlier in this paper suggests that this is 
a number on the order of 1/50.  that would imply that a total of some 
600,000 persons in the county  would have been infected without the 6

shelter-in-place order.   Deaths also show about a six-fold increase 
without social distancing requirements. 

We ask the question:  What will happen if we remove the shelter-in-
place order?  We can explore this possibility by again simulating several 
scenarios. The simulation begins 10 MAR 2020 (this is t=0). The shelter 
in place order was effective 30 Mar 2020 (week 2.9), and the date of 
modification of the shelter-in-place directive in the simulation is 19 
MAY 2020.  In Figure 14, the black curve represents the evolution of 
the pandemic if we continue on the current shelter-in-place plan. The 
red curve represents the evolution if we return to interactions pre-SIP.  
The green and blue curves are intermediate strategies between these 
two extremes.  It is most clear if we focus on the infections I(t).  In all 
cases, there is a second wave of infections.  It makes sense that 
the closer we stay to the current SIP state, the smaller the peak.  
However, worst case scenerio (red) still yields a peak greater than that 
when SIP was initiated, and about 70% of what would have occurred if 
we never had a shelter-in-place order in March 2020. This is a strong 

 That would amount to about 30% of the county’s population.6
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Fig 14: Santa Clara Projections with modification of shelter-
in-place order at week 10.  (black) continue shelter-in-place, 
(red) go back to interactions before directive, plus 2 
intermediate strategies.
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warning that the way we move out of managing interactions is 
absolutely critical! Why does this happen?  Relaxing restrictions on 
social interaction increases  and the infection rate grows decreasing S/
N. When S/N achieves a critical value, the infection will peak and then 
diminish. For any value of   and  The growth of the infection 

(equation 9b) will reach a maximum, when  in equation (23). 

ρ

ρ, μ, α
dIc

dt
= 0
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Fig 15:  Critical values of S/N defining the apex events after 
modification of shelter-in-place order.
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(23) 

   = 0  when   

  

This is the critical value of  which will cause the infections to decline.  

Of course, these simulations cannot link back to key factors in 
reigniting the economy such as when to reopen restaurants, hair salons, 
etc.  Rather, by tracking the resurgence of infections when change is 
made, we should be able to see what the trajectory to our future will be. 

The only long term solution to the problem of the COVID-19 epidemic is 
the development and deployment of a vaccine.  Remember, the strategy 
of requiring social distancing is a delaying factor, not the solution.  
Critical issues to relaxing the shelter-in-place orders are: 

• New cases should be declining 
• Medical infrastructure must be prepared for a “second wave” 
• Testing must be in place and deployed 
• Contact tracing must be implemented to track and isolate outbreaks 
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Resources 
The simulations described in this paper were written in Python using 
the Anaconda IDE. I used Jupyter Lab to document the development. If 
you have a Jupyter enabled environment, you can use the notebook 
below to explore my work.  Failing that, you can use an internet 
browser to open the Notebook as an html file (although it will not be 
executable).  The data for Santa Clara County is in the cvs file linked 
below. 

Jupyter Notebook 
Jupyter Notebook as html file 
Santa Clara County csv file 

Disclaimer 

The author is not a medical doctor or a public health professional.  He is 
a systems engineer with considerable experience in systems modeling 
and control.  The material in this paper has not been peer reviewed and 
has not been vetted by medical or public health professionals. 

Donald R. Falkenburg 
drfalken@comcast.net
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